Linac-Ring Version of eRHIC Ilan Ben-Zvi^{1,2}, Rama Calaga¹, Xiangyun Chang¹, Manouchehr Farkhondeh³, Alexei Fedotov¹, Jörg Kewisch¹, Vladimir Litvinenko¹, William Mackay¹, Christoph Montag¹, Thomas Roser¹, Vitaly Yakimenko² Collider-Accelerator Department ⁽¹⁾, Physics Department ^{(2),} Brookhaven National Laboratory Bates, MIT ⁽³⁾ ## ERL e-RHIC. IP at 4 o'clock version Electron cooling (not in scale!) RHIC EBIS Booster Linac AGS - Wide range of collision energies (E_{cm}/nucleon from 15 GeV to 100 GeV. e energy as low as 2 GeV). - High luminosity $\sim 2 \times 10^{33}$ cm⁻² s⁻¹ for protons, $\sim 2 \times 10^{31}$ cm⁻² s⁻¹ for gold independent of e energy. - High degree of polarization (>80%) of the electrons at any energy, no forbidden energies. - One or two interaction regions with dedicated detectors - e Energy simply upgradeable. - Reduction of synchrotron radiation in detector by cooling ions. - No quadrupoles in detector. - Simple compensation for ion velocity. - Possibility of γ -ion collider. ## Main features